Department of Tissue Engineering

Department of Tissue Engineering

Department of Tissue Engineering

 

Filová_web

Head: Mgr. Eva Filová, Ph.D.

(Temporarily charged with management of the department)
 
Tel.: +420 241 062 387
 
The research of the Department is focused on the development of artificial tissues, mainly biodegradable scaffolds for tissue regeneration, such as nanofibers, foams, and hydrogels for the regeneration of cartilage, bone and incisional hernia. We also focus on computer modeling of protein structures. We are developing the technology of controlled drug delivery from nanofibers scaffolds with liposomes for targeted release of drugs into the defect. The work is also concentrated on the development of three-dimensional nanofibers, using novel technique of Forcespinning®. These nanofibres are more suitable for cell growth and differentiation. Moreover, high on our priority list is also the accelerated transfer of newly developed technologies and know-how into clinical practice. We are developing artificial scaffolds for the regeneration of bone and cartilage in clinical practice.
 

 

 

Research Scientists:
Prof. Franco Rustichelli
Bruno Sopko, Ph.D.
Eva Filová, MSc., Ph.D.
Michala Rampichová, MSc., Ph.D. (on ML)
Andrej Litvinec, MSc., Ph.D.
Andrea Staffa, MSc., Ph.D. (on ML)

PhD Students:
Martin Královič, MSc.
Karolína Vocetková, MD et Dipl. Ing.
Jana Daňková, MSc.
Věra Sovková, MSc.
Gracián Tejral, MSc.
Radek Divín, MSc.
Věra Lukášová, MSc.
Barbora Kodedová, CSc.
Veronika Blahnová, CSc.

Undergraduate Students:
Gabriela Korbelová, Bc.

Technicans:
Kateřina Žambochová
Jana Závodská

 

Important results in 2015

 

 

1. We have developed dispersion nanofibers from poly-ε-caprolactone enriched with magnetic nanoparticles prepared by needleless electrospinning.
The nanofibers enhanced adhesion and osteogenic proliferation of pig mesenchymal stem cells and are promising for bone regeneration. (Daňková et al. 2015).

 

Scanning electron microscopy of the poly-ε-caprolactone nanofiber scaffold with magnetic nanoparticles.

 

 

2. We have developed polypropylene (PP) surgical mesh coated with PCL nanofibers with adhered thrombocytes as natural source of growth factors.

The composite mesh with thrombocytes showed improved fibroblasts adhesion, proliferation, and metabolic activity compared to PP, PP coated with nanofibers, and PP functionalized with thrombocytes. The system of composite scaffold with growth factors released from thrombocytes is promising approache for tissue engineering.

 

Scanning electron microscopy of the implanted scaffolds. (A) PCL nanofibers; (B) PP mesh; (C) PP mesh functionalized with PCL nanofibers.

 

 

3. Nanofibers from polyvinyl alcohol (PVA) were functionalized by polyethylene glycol with biotin (PEG-b) linker and sequence-specific binding of avidin- antibody conjugate.

PEG-b functionalized nanofibers significantly decreased nanofiber decay in a controlled manner. Moreover, the binding of anti CD-29 antibody to PEG-b linker stimulated mesenchymal stem cell adhesion to PVA-PEG-b nanofibers through β1-integrin receptor. The second system of the selective protein binding on the nanofiber surface represented anti-transferrin-PEG-b nanofibers.

 

Photomicrograph and schema of nanofibers from polyvinylalcohol (PVA) functionalized with polyethylene glycol with biotin (PEG-b) linker and sequence-specific binding of avidin- antibody (anti-transferin) conjugate.

 

 

Publications:
Jana Daňková, Matej Buzgo,Jana Vejpravová, Simona Kubíčková,Věra Sovková, Lucie Vysloužilová, Alice Mantlíková, Alois Nečas, Evžen Amler. Highly efficient mesenchymal stem cell proliferation onPCL nanofibers with embedded magnetic nanoparticles. Int J Nanomedicine. 2015 Dec 7;10:7307-17. IF 4.195

Plencner M, Prosecká E, Rampichová M, East B, Buzgo M, Vysloužilová L, Hoch J, Amler E. 2015. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int J Nanomedicine. 2015 Apr 1;10:2635-2646. IF 4.195

Buzgo M, Greplová J, Soural M , Dagmar Bezděková, Andrea Míčková, Olga Kofroňová, Oldřich Benada, Jan Hlaváč, Evžen Amler. PVA immunonanofibers with controlled decay. Polymer 2015 Oct 23; 77:387-398 IF = 3.562

 

 

Important results in 2015

1. Functionalized nanofibers for controlled drug delivery
The system of functionalized nanofibers with controlled drug delivery has been developed and optimized. This system has been applied for treatment of incisional hernia. Polypropylene surgical mesh was modified by PCL nanofibers covering and functionalised with adhesion of growth factors. Samples were tested in vivo on a rabbit model as a model for prevention of incisional hernia formation.

 

 

Scanning electron microscopy of the scaffolds used for the abdominal closure. Notes: (A) nanofibers from poly-ε-caprolactone (magnification 230×); (B) polypropylene mesh (magnification 18×); (C) polypropylene mesh functionalized with poly-ε-caprolactone nanofibers (magnification 18×).

 

 

Collaboration: Institute of Biomedical Engineering, Czech Technical University in Prague, Kladno; University Centre for Energy Efficient Buildings

Publication:

Amler E, Filová E, Buzgo M, Prosecká E, Rampichová M, Nečas A, Nooeaid P, Boccaccini AR, (2014): Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine-UK 9(7): 1083–1094, IF 5.9
Plencner, M., et al.: Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 9: 3263-3277, IF 4.2


2. Biomechanical testing of the repaired abdominal wall
Abdominal closure was reinforced by application of polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors. This novel arrangement is going to be used for prevention of incisional hernia formation. However, the system seems to be very general and there is intended for much broader chirurgical and orthopedical application.

 

Images of carriers used for closure of abdominal incision switched by scanning electron microscopy. (A) nanofibers of poly-ε-caprolactone (magnification × 230), (B) polypropylene mesh (18 × magnification), (C) polypropylene mesh using functionalized nanofibers of poly-ε-caprolactone.

 

Histological evaluation. Collagen, adipose tissue, and granulomatous infiltration in the scaffolds under study. In samples without any mesh (A), the incision was healing with a mixture of collagen (black arrow), adipose connective tissue (red arrow) and inflammatory infiltrate (yellow arrow). Samples with polypropylene (PP) mesh (B) had a high fraction of adipose tissue, but the spaces showing the dissolved mesh (black arrows) were surrounded by only a few inflammatory cells. Remnants of the nanofibers (C, D, E, F) were surrounded by granulomatous leukocyte-rich connective tissue (yellow arrows in C, D, E, F). The highest fraction of collagen (red arrow) was in samples of PCL nanofibers with adhered growth factors (GF) (D), followed by samples with no mesh (A) and by samples of PCL nanofibers (F). Low fractions of adipose tissue were found in samples of PCL nanofibers with adhered GF (D), samples with no mesh (A) and in samples of PCL nanofibers (F).

 

 

Publication:

Plencner M, East B, Tonar Z, Otáhal M, Prosecká E, Rampichová M, Krejčí T, Litvinec A, Buzgo M, Míčková A, Nečas A, Hoch J, Amler E, (2014): Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 9: 3263-3277, IF 4.195

 

 

Important results in 2013



1.Time-regulated drug delivery system based on coaxially incorporated platelet alpha granules for biomedical use
Alpha granules are novel source of natural growth factors from platelets. In recent work we had sucesfully embedded alpha granules into nanofibers with core/shell structure. The alpha granules survived the electrospinning proces and growth factors retained their bioaktivity as was demonstarted on the model of chondrocytes and mesenchymal stem cells.

 

 
Fig.A.,B. Micrograph alpha granules encapsulated in coaxial nanofibers polycaprolactone and polyvinyl alcohol using scanning electron microscopy (FESEM).

 

 

Collaboration:
Ústav biofyziky, 2.lékařská fakulta Univerzita Karlova v Praze; Oddělení mechaniky, Fakulta aplikovaných věd, Západočeská univerzita v Plzni; Textilní fakulta, Katedra netkaných textilií, Technická univerzita v Liberci

Publication:
Buzgo M., Jakubova R., Mickova A., Rampichova M., Prosecka E., Kochova P., Lukas D., Amler E.: (2012) Time-regulated drug delivery system based on coaxially incorporated platelet alpha granules for biomedical use. Nanomedicine- UK. 8(7): 1137-1154. IF 5,26

 

2. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs
A novel drug delivery system was developed on the basis of the intake effect of liposomes encapsulated in PVA nanofibers. Time-controlled release of insulin and bFGF improved MSC viability in vitro. In addition, cell-free composite scaffolds containing PVA nanofibers enriched with liposomes, bFGF, and insulin were implanted into seven osteochondral defects of miniature pigs; control defects were left untreated. The cell-free composite scaffold enhanced migration of the cells into the defect, and their differentiation into chondrocytes; the scaffold was able to enhance the regeneration of osteochondral defects in minipigs.

 

 
Fig. Regeneration of osteochondral defect of miniature pig using a cell-free collagen type I/hyauronate sodium/fibrin gel containing polyvinyl alcohol nanofibers enriched with liposomes and growth factors (A) and untreated defect (B) 12 week after implantation. Alcian blue and PAS staining.

 

 

Collaboration:
Fakulta biomedicínského inženýrství, ČVUT v Praze, Ústav biofyziky, 2. LF UK v Praze, Fyziologický ústav AV ČR, v.v.i., Ústav stavebníctva a architektúry SAV, Textilní fakulta, Technická univerzita Liberec, Ústav živočišné fyziologie a genetiky AV ČR, v.v.i., Ústav histologie a embryologie, 2. LF UK v Praze, Student Science, s r.o.

Publication:
Filová E., Rampichová M., Litvinec A., Držík M., Míčková A., Buzgo M., Košťáková E., Martinová L., Usvald D., Prosecká E., Uhlík J., Motlík J., Vajner L., Amler E. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm. 2013 Apr 15;447(1-2):139-49. IF 3,458.

3. Electrospun core/shell nanofibers: a promising system for cartilage and tissue engineering
Alpha granules are novel source of natural growth factors from platelets. In recent work we had sucesfully embedded alpha granules into nanofibers with core/shell structure. The alpha granules survived the electrospinning proces and growth factors retained their bioaktivity as was demonstarted on the model of chondrocytes and mesenchymal stem cells.

 

 
Fig. Coaxial nanofibres of polyvinyl alcohol (core) and polycaprolactone (sheath) with incorporated labeled alpha-granules carboxy fl uorescein succinimidyl ester scanned by confocal microscopy.

 

 

Collaboration:  
Ústav biofyziky, 2. LF UK v Praze; Univerzitní centrum energeticky efektivních budov, Buštehrad

Publication: 
Amler E., Mickova A., Buzgo M. Electrospun core/shell nanofibers: a promising system for cartilage and tissue engineering? Nanomedicine (Lond). 2013 Apr;8(4):509-12. IF 5,26.

Czech Science Foundation, grant No. 15-15697S (2015-2017) Three-dimensional nanofibrous scaffolds with incorporated controlled drug delivery system for bone and osteochondral tissue engineering

Czech Science Foundation, grant No. 16-14758S (2016-2019) Influence of surface nanotopography on bioactive properties of low modulus titanium alloy

Ministry of Education Youth and Sports of the Czech Republic, Grant No. LO1508 (NANOGEN) (1.7.2015 – 30.6.2020) Genomics and Proteomics for study of mechanism of biological effect of manufactured nanoparticles

Ministry of Education Youth and Sports of the Czech Republic, Grant No. LO1309 (1.7.2014 – 30.6.2019) Cell Therapy and Tissue Repair

TACR, project GAMA No. TG01010135 (12/2015-11/2016) 3D composites hydrogels for osteogenic differentiation of MSCs in in vitro conditions

Grant Agency of Charles University of Prague, grant No. 1228214 (2014-2016) In vitro testing of carrier system based on nanofibres for the treatment of vitiligo

Grant Agency of Charles University of Prague, grant No. 512216 (2016-2019) 3D scaffolds prepared using centrifugal spinning for cartilage and bone regeneration

2015

Buzgo, M., Greplová, J., Soural, M., Bezděková, D., Míčková, A., Kofroňová, O., Benada, O., Hlaváč, J., Amler, E.: (2015) PVA immunonanofibers with controlled decay. Polymer. 7: 387-398.

Daňková, J., Buzgo, M., Vejpravová, J., Kubíčková, S., Sovková, V., Vysloužilová, L., Mantlíková, A., Nečas, A., Amler, E.: Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. Int J Nanomedicine. 10:7307-17.

Erben, J., Pilarová, K., Sanetrnik, F., Chvojka, J., Jenčová, V., Blažková, L., Havlíček, J., Novák, O., Mikeš, P., Prosecká, E., Lukaš, D., Kuzelová Kostaková E.: (2015) The combination of meltblown and electrospinning for bone tissue engineering. Materials Letters 143, 172-176.

Filová, E., Jakubcová, B., Danilová, I., Kuželová Košťáková, E., Jarošíková, T., Chernyavskiy, O., Hejda, J., Handl, M., Beznoská, J., Nečas, A., Rosina, J., Amler, E.: (2015) Polycaprolactone foam functionalized with chitosan microparticles - a suitable scaffold for cartilage regeneration. Physiol Res. IN PRESS

Kubíková, T., Filová, E., Prosecká, E., Plencner, M., Králíčková, M., Tonar, Z.: (2015) Histological evaluation of biomaterials administration in vivo on the cartilage, bone and skin healing. Cas Lek Cesk., 154(3):110-4.

Plencner, M., Prosecká, E., Rampichová, M., East, B., Buzgo, M., Vysloužilová, L., Hoch, J., Amler, E.: (2015) Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int J Nanomedicine.10:2635-2646.

Prosecká, E., Rampichová, M., Litvinec, A., Tonar, Z., Králíčková, M., Vojtová, L., Kochová, P., Plencner, M., Buzgo, M., Míčková, A., Jančář, J., Amler, E.: (2015) Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part A., 103(2): 671-682.

Sukhoruková, I.V., Sheveyko, A.N., Kiryukhantsev-Korneev,Ph.V., AnisimováN.Y., Gloushanková, N.A., Zhitnyak, I.Y., Benešová, J., Amler, E., Shtanský, D.V.: (2015) Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading. Applied Surface Science. 330:339–350.

 

2014

Amler, E., Filová, E., Buzgo, M., Prosecká, E., Rampichová, M., Nečas, A., Nooeaid, P., Boccaccini, A. R.: (2014) Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine-UK 9(7): 1083-1094.

Fedorová, P., Srnec, R., Pěnčík, J., Schmid, P., Amler, E., Urbanová, L., Nečas, A.: (2014) Mechanical testing of newly developed biomaterial designed for intra-articular reinforcement of partially ruptured cranial cruciate ligament: ex vivo pig model. Acta Vet.BRNO 83(1): 55-60.

Plencner, M., East, B., Tonar, Z., Otáhal, M., Prosecká, E., Rampichová, M., Krejčí, T., Litvinec, A., Buzgo, M., Míčková, A., Nečas, A., Hoch, J., Amler, E.: (2014) Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 9: 3263-3277.

Rampichová, M., Buzgo, M., Chvojka, J., Prosecká, E., Kofroňová, O., Amler, E.: (2014) Cell penetration to nanofibrous scaffolds: Forcespinning®, an alternative approach for fabricating 3D nanofibers. Celll Adhes. Migr. 8(1): 36-41.

 

2013

Amler, E., Míčková, A., Buzgo, M.: (2013) Electrospun core/shell nanofibers: a promising system for cartilage and tissue engineering? Nanomedicine-UK. 8(4): 509-512.

Buzgo, M., Jakubová, R., Míčková, A., Rampichová, M., Prosecká, E., Kochová, P., Lukas, D., Amler, E.: (2013) Time-regulated drug delivery system based on coaxially incorporated platelet alpha granules for biomedical use. Nanomedicine-UK. 8(7): 1137-1154.

Filová, E., Rampichová M., Litvinec, A., Držík, M., Míčková, A., Buzgo, M., Košťáková, E., Martinová, L., Usvald, D., Prosecká, E., Uhlík, J., Motlík, J., Vajner, L., Amler, E.: (2013) A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int. J. Pharm. 447(1-2): 139-149.

Rampichová, M., Chvojka, J., Buzgo, M., Prosecká, E., Mikeš, P., Vysloužilová, L., Tvrdik, D., Kochová, P., Gregor, T., Lukáš, D.,Amler, E.: (2013) Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhanced migration, proliferation, and osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 46(1): 23-37.

University Centre for Energy Efficient Buildings, Czech Technical University in Prague

Faculty of Mechanical Engineering, Czech Technical University in Prague

Faculty of Chemical Technology, University of Chemistry and Technology in Prague

Brno University of Technology, Faculty of Chemistry, Institute of Materials Science

Central European Institute of Technology, BUT, Advanced Polymers and Composites

Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Institute of Medical Biophysics

Second University of Naples, Department of Experimental Medicine